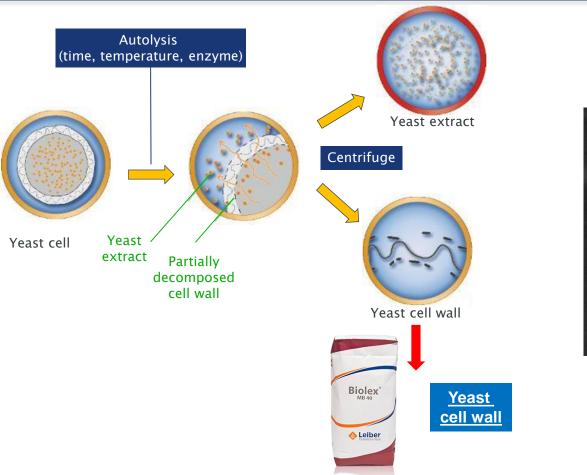
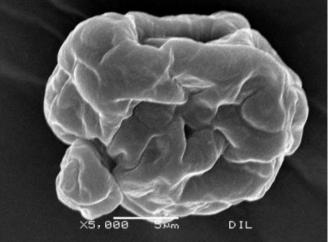


Animal Health

Leiber Biolex[®] MB40: prebiotic brewer's yeast cell walls for aquaculture Product properties and functionalities

Dr. Holger Kühlwein Global Key Account Manager Aquaculture


June 2020



1

Production, product properties and overview "mode of action"

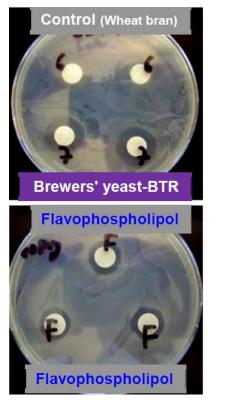
	Leiber [®] Brewers' Yeast unextracted	Biolex [®] MB40	
Protein (%)	46	25	
ß-Glucan (%)	10 - 15	25	
Mannan (%)	7 - 10	20-25	
Oils and fats (%)	2.7	7.5	
Ash (%)	8	4	
Dosage (kg/to feed)	10 - 50	0.5 – 2	

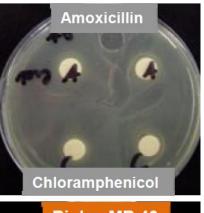
Modes of action

- Bacteriostatic effect due to bioactive hops components only in brewer's yeast products!!
- Prebiotic effect on beneficial microorganisms
- Binding of certain pathogen and their toxins as well as certain mycotoxins
- Activation of immunity (ß-glucans in the yeast cell wall activate immune cells)
- Formation of a biofilm on the gut mucosa (barrier function)
- Improvements in gut morphology

The bacteriostatic effect

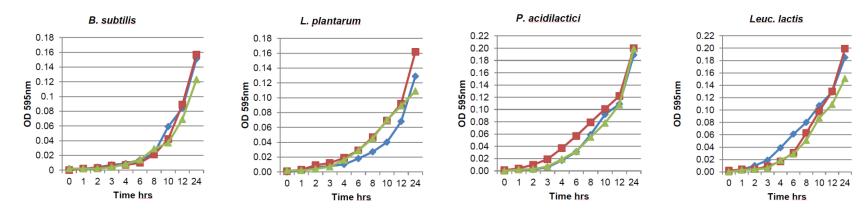
Bacteriostatic effects


- Hops only in brewer's yeast \rightarrow through hop ingredients (a-acids, ß-acids, polyphenols flavonoids)
- Hop effects:
 - ✤ calming
 - antioxidative
 - adstringent
 - bacteriostatic



Bacteriostatic effects

- Inhibitor test results
 - Inhibition of Staphylococcus aureus
 - Bacteriostatic effects
 - Resistant antibiotics
- Conclusion
 - Mode of action against resistant pathogens



The prebiotic effect

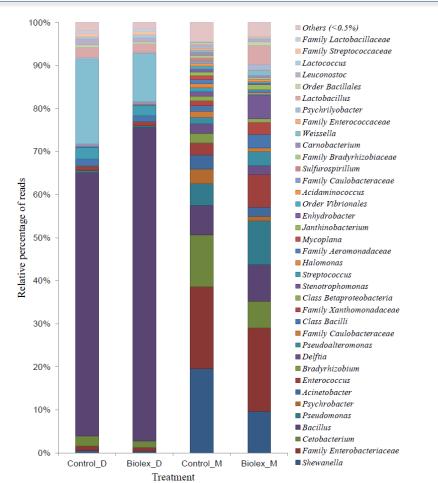
The prebiotic effect – utilization by probiotic bacteria

Peggs and Merrifield, Plymouth University (2014) – in vitro

Bacillus subtilis, Lactobacillus plantarum, Pediococcus acidilactici and Leuconostoc lactis in DMEM minimal media with Biolex[®] MB40 (5% w/v) as the only carbon source. Each strain was tested in triplicates.

Literature examples of beneficial effects of the tested probiotics in fish/shrimp					
Bacillus subtilis	Lactobacillus plantarum	Pediococcus acidilactici	Leuconostoc lactis		
Rainbow trout (Brunt et al., 2007)	Tilapia (Ren <i>et al</i> ., 2013)	Tilapia (Standen <i>et al</i> ., 2013)	Disch Derey (Zhang et al. 2012)	9	
Olive flounder (Cha et al., 2013)	Rainbow trout (Perez-Sanchez et al., 2011)	Blue shrimp (Castex et al., 2013)	Black Porgy (Zhang et al., 2013)		

Prebiotic brewer's yeast cell walls: in vivo experiment



Effect of dietary Biolex[®] MB40 on the gut microbiome of rainbow trout

- Peggs and Merrifield, Plymouth University (2015)
- Rainbow trout with initial body weight of 128.1 ± 0.6 g in triplicate tanks
- Feeding for 28 days at 2% of body weight 2 isonitrogenous (43% protein) and isolipidic (20% lipid) diets
- ♦ Aseptical sampling of mucosa and digesta → high-throughput sequencing (Ion Torrent)

	Control	Biolex [®] MB40
Fishmeal (Herring meal LT94)	28.00	28.00
HP 100, soy protein concentrate, 54% protein	10.00	10.00
SPC 60, soy protein concentrate, 60% protein	13.03	13.03
Glutalys	10.74	10.74
Vital wheat gluten	5.03	5.03
Fish oil	7.63	7.63
Sunflower oil	9.00	9.00
Corn starch	15.07	14.87
Mineral/vitamin premix	1.00	1.00
CMC binder	0.50	0.50
Biolex® MB40	-	0.20

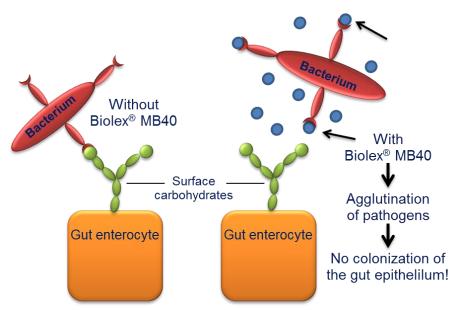
Prebiotic brewer's yeast cell walls: in vivo experiment

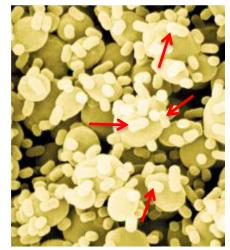
The relative proportion (%) of reads from the intestinal digesta (D) and mucosa (M) by treatment, assigned at the genus level >0.5%.

Prebiotic brewer's yeast cell walls: in vivo experiment

Effect of dietary Biolex[®] MB40 on the gut microbiome of rainbow trout

Taxon Control Biolex [®] MB40 P-value Evaluation				
Ιάλομ	Control		r-value	Evaluation
Digesta				
Staphylococcus	0.4 ± 0.0^{a}	0.2 ± 0.1^{b}	< 0.01	Pathogenic potential
Bacillus	61.2 ± 14.2	72.9 ± 9.9		Probiotic potential (see in vitro trial)
Mucosa				
Shewanella	19.6 ± 4.3^{a}	9.6 ± 7.7^{b}	< 0.02	Pathogenic potential
Psychrobacter	3.5 ± 1.7 ^a	1.1 ± 0.8^{b}	< 0.02	Pathogenic potential
Weissella	0.5 ± 0.4^{a}	1.2 ± 0.6^{b}	< 0.05	Probiotic potential
Bacillus	6.9 ± 2.9	8.5 ± 5.2		Probiotic potential (see in vitro trial)
Lactobacillus	0.4 ± 0.6	4.4 ± 6.9		Probiotic potential (see in vitro trial)
Leuconostoc	0.1 ± 0.1	0.6 ± 0.7		Probiotic potential (see in vitro trial)

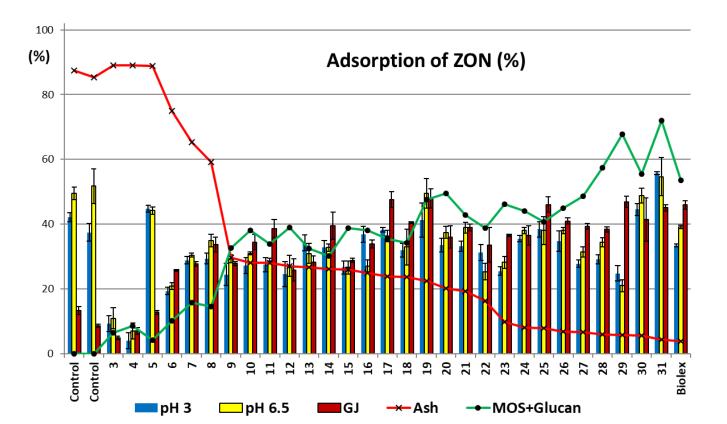

Abundance (%) of important OTUs in digesta and mucosa samples



Pathogen and mycotoxin binding

Binding of certain pathogens and their toxins

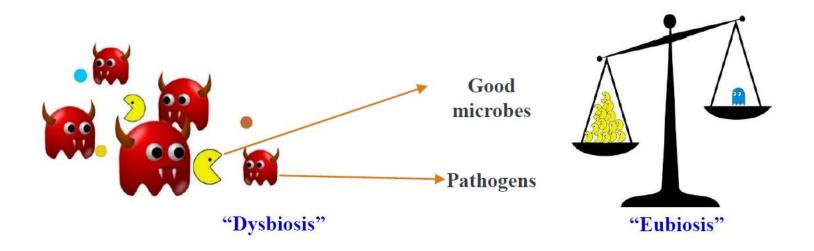
- Mannose binding lectins of yeast cell wall recognize carbohydrate patterns on surface of many pathogens
- High binding strength and deactivation of pathogens and toxins in the gut lumen
- Pathogens are inhibited from colonizing and attaching to the gut epithelium
 - > Excretion with the faeces!!



Scanning electron microscopy showing the agglutination of bacteria (arrows) Gedek, 2001

- Mycotoxin binding through high concentration of MOS and surface receptors (fibrills) in the yeast cell wall
- Support of the mycotoxin degrading microbiota
- Mycotoxin binding Zearalenon Experiment Fruhauf et al., 2012
 - Binding of ZON in vitro (buffer pH 3, buffer pH 6,5 and gastric juice)
 - Test material: 32 toxin binders (2 on clay basis as controls, 10 MOS/ß-glucan products and 20 mixtures)
 - Aim of the study: binding effect depending on the ash content and on the MOS/ß-glucan content

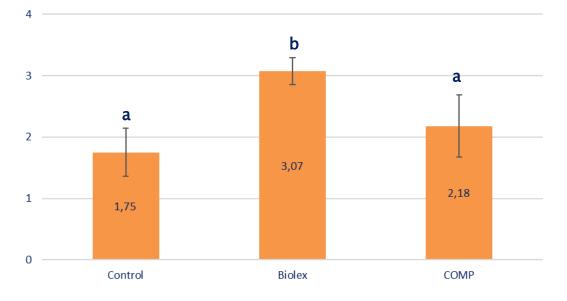
Results in comparison with registered Mycotoxinbinders!!



- No binding effect with bentonite on ZON
- Limited effect with "mixed" products (bentonite/MOS)
- The higher the mannan and ß-glucan content, the higher the adsorption
- Biolex[®] MB40 shows the best binding effect in gastric juice
- Conclusion: Biolex[®] MB40 is most efficient in binding zearalenone!

Effects on the gut microbiota in summary

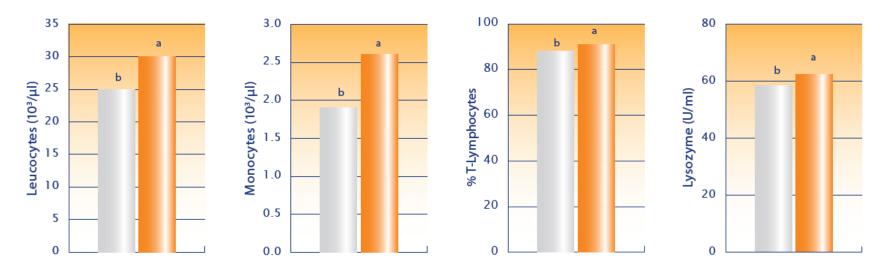
- Prebiotic effect: brewer's yeast cell wall as fermentable substrate for the intestinal microbiota
- Bacteriostatic effect from hops components
- Result together with the pathogen and mycotoxin binding:
- Indirect reduction of harmful microbiota and support of a physiological microbial environment in the gut



Activation of immunity

Activation of immunity (ß-glucans in the YCW activate immune cells)

- Support and relief for the immune system \rightarrow Activation of defense mechanisms
- Benchmarking trial against competitor product (2016); feeding of tilapia juveniles with <u>2 kg/to</u> Biolex[®] MB40 vs. <u>4 kg/to</u> competitor product (*n* = 21)


Respiratory burst (OD630)

Respiratory burst analysis of whole blood after 6 weeks of feeding (n = 21). Results are presented as means with standard deviation. Different superscripts indicate a significant difference (p < 0.05)

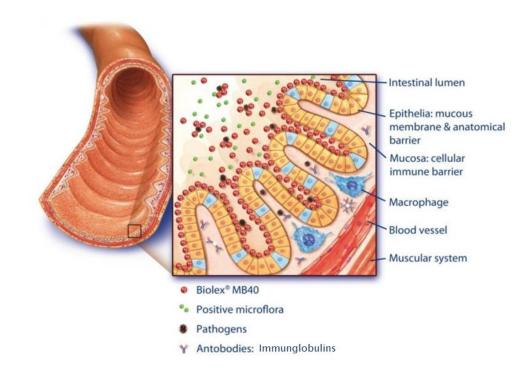
Activation of immunity (ß-glucans in the YCW activate immune cells)

- ♦ Support and relief for the immune system \rightarrow Activation of defense mechanisms
- Tyson Foods Inc. Research Farm (2011); feeding of broilers with 2 kg/to Biolex[®] MB40 (n = 2000)

Control
Biolex[®] MB40

*n=20

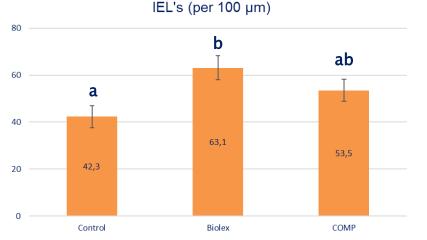
^{a,b} significant difference between data with different letters (P < 0.05)



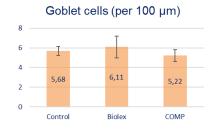
Biofilm formation

Formation of a biofilm on the gut mucosa

◆ Biofilm as infection barrier → forming an additional protective layer on the intestinal mucosa



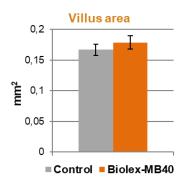
Improvements in gut morphology

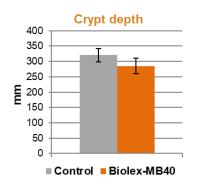


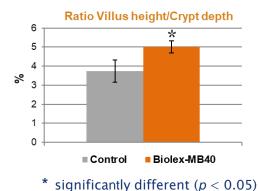
Improvements in gut morphology and GALT (gut-associated lymphoid tissue)

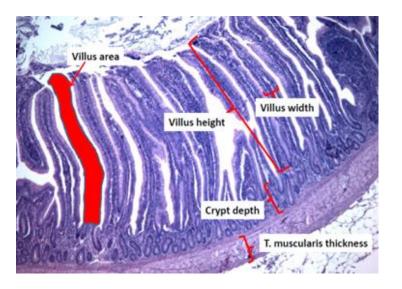
- Increases in absorptive surface area (perimeter ratio, villi length, etc.)
- Improvements in number of goblet cells and/or intraepithelial leukocytes (IEL's)
- Benchmarking trial against competitor product (2016); feeding of tilapia juveniles with <u>2 kg/to</u> Biolex[®] MB40 vs. <u>4 kg/to</u> competitor product (recommended dosages)

Perimeter ratio (AU) 6 4,5 3 1,5 0 Control Biolex COMP


26




Improvements in gut morphology


Broiler feeding trial at University of Novi Sad, Serbia (2014); feeding of 2 kg/to Biolex[®] MB40 for 42 days

Polish field trial data in carp (Cyprinus carpio)

- ✤ A field trial was conducted at the Fish Breeding station in Bachury, Poland
- 2 ponds (2 ha each) were used for the trial (one for control and one for Biolex MB40 treatment)
- Juvenile carp in good condition were stocked in ponds May 2019, trial finished mid-September 2019
- Initial average body weight of the carp was 50 g, the total stocking density was 5000 carp per pond

- Feeds and feeding
 - Feeds produced by Probio sp.z.oo. (Plowce, Poland)
 - Ingredients: soybean meal, wheat flour, rapeseed meal, pea, corn, DDGS, sunflower oil, linseed, CaCO₃, NaCl (exact formula company secret)
 - 0.2 % Biolex[®] MB 40 was added to the feed mix and pelleted (2.5 and 3.5 mm)
 - Feeding 3 times/week (Mon, Wed, Fri)
 - Average body weight was calculated bi-weekly by catching carp with a castnet from the ponds

Chemical composition of feed

Crude protein	29%	Vit A	8000 IU
Energy	12.5 MJ	Vit D3	1500 IU
Crude fiber	6 %	Vit E	100 mg
Crude fat	5 %	Cu	10 mg
Crude ash	5 %	Zn	70 mg
Са	0.5 %	Mn	90 mg
Na	0.1 %	Fe	120 mg
P total	0.6 %	J	1.2 %
Lysine	1.48 %	Se	0.15 mg
Methionine	0.38 %	Aroma	200 mg
Threonine	0.95 %		

Parameter	Control	0.2 % Biolex® MB40	Difference in %
Total initial body mass (5000 pc.)	250 kg	250 kg	
Ø initial body weight	50 g	50 g	
Total final body mass	1465 kg	1800 kg	+ 23 %
Ø final body weight	480 g	450 g	- 6 %
Feed conversion	2.47	1.93	- 22 %
Estimated losses	39 %	20 %	- 51 %
Total amount of feed used	3000 kg	3000 kg	
Feed costs/kg	0.53€	0.54 €	
Feed costs/kg weight gain	1.31 €	1.05€	- 20 %

- Further remarks:
 - During harvest also grass carp (*Ctenopharyngodon idella*) were caught ~ 800 kg
 - Quite cold water temperature at trial start (start got delayed)
 - Some cormorant issues at the farm
 - Follow-up trial planned with 3rd-year carp from May-September (~ 450 g until market size)

Conclusions and recommendations for use

Conclusions

- Biolex[®] MB40 has a strong bacteriostatic effect against highly antibiotic-resistant pathogens
- Biolex[®] MB40 strongly promotes beneficial and inhibits potentially pathogenic bacteria in the gut
- Biolex[®] MB40 most efficiently binds and deactivates ZON, potential to bind other mycotoxins
- Biolex[®] MB40 supports and relieves the immune system
- Biolex[®] MB40 forms an additional protective infection barrier / biofilm on the gut mucosa
- Biolex[®] MB40 leads to improvements in gut morphology and gut-associated lymphoid tissue

Recommended usage

- ♦ 1 2 kg/to in feed (0.1 0.2%) → usually 2 kg/to feed
- To prevent or counteract impaired gut health

→ through gut dysbiosis - impaired gut microbial communities (e.g. after antibiotic treatment)

 \rightarrow where challenging diets are used (high levels of plant ingredients, mycotoxins, etc.)

- Support of immunity in grow-out stages
- Maintaining high immune competence if purified ß-glucans were used in larval stages as immune boosters

 \rightarrow follow-up treatment

Leiber® Beta-S, Beta-S Plus, Biolex® MB40 and CeFi® pro

General recommendation guideline for conceptual use in fish and shrimp

For more information please contact:

Dr. Holger Kühlwein, Key Account Manager Aquaculture • Phone: +49 173 5255293 • h.kuehlwein@leibergmbh.de

Thanks a lot for your attention!

Exclusive Australian Distributors Prime Animal Health Level 8, Chadstone Tower 1 1341 Dandenong Road, Chadstone, Victoria 3148 Tel: (03) 9809 4334 Animal Health Email: sales@primeanimalhealth.com.au